The importance of evaluating measurement uncertainty for troponin I

Kübranur Ünal1, Gökçe Filiz Atikeler2
1Department of Biochemistry, Polatlı Public Hospital, Ankara, Turkey
2Department of Biochemistry, SU Hospital, İzmir, Turkey

Abstract

Aim: Myocardial infarction can be life threatening and the early diagnosis of acute myocardial infarction is highly important. The measurement of cardiac troponin is the preferred way to establish the diagnosis of acute myocardial infarction. Measurement uncertainty provides quantitative estimates of the level of confidence that a laboratory has in its analytical precision of test results. The aim of this study is to present the importance of reporting hs-troponin I analysis results with measurement uncertainty estimation. Material and Method: The results of 16679 patients (8060 males and 8619 females) whose hs-troponin I results were analyzed in our laboratory in 2016 were retrospectively reviewed. The uncertainty of measurement was calculated according to Eurachem/CITAC Guide CG. The hs-troponin I analysis results were re-evaluated by estimation of measurement uncertainty. Results: Measurement uncertainty for hs-troponin I is estimated to be ±19.60%. In this study, 346 hs-troponin I analysis results (206 females and 140 males) which are above manufacturer recommended cutoff values might be below cutoff values if they were assessed based on measurement uncertainty. Also, 260 Troponin I analysis results (155 females and 105 males) which are below manufacturer recommended cutoff values cutoff values might be above cutoff values if they were assessed based on measurement uncertainty. The results of 606 out of 16679 patients (3.63%) were affected by uncertainty values. Discussion: Medical laboratories should calculate uncertainty of troponin tests and report this in conjunction with troponin results to help clinicians. A test result is not powerful enough without an assessment of its reliability. Therefore, hs-troponin I results which are close to cutoff values should be evaluated with uncertainty of measurement.

Keywords

Measurement Uncertainty; High-Sensitivity Troponin I; Myocardial Infarction

This study was presented as a poster presentation at the 42nd FEBS Congress 10-14 September in Jerusalem, Israel.
Introduction
Heart disease is an important cause of death all over the world. Myocardial infarction can be life threatening and the early diagnosis of acute myocardial infarction (AMI) is highly important. Early diagnosis and treatment is important for people who are suspected of having an AMI and prevents complications that can be caused by AMI.

The measurement of cardiac troponin (cTn) is the preferred way to establish the diagnosis of acute myocardial infarction (AMI) [1]. European Society of Cardiology (ESC) guidelines recommend serial measurement of troponin after 1 or 3 hours, when using high-sensitivity assays [2]. High-sensitivity troponin (hs-troponin) assays have been developed for detection of extremely low troponin concentrations [3]. Such hs-troponin assays are recommended in early rule-out protocols for AMI [4].

Hs-troponin I method
The CMIA (Chemiluminescent Microparticle ImmunoAssay) method in i2000 Architect Abbott auto analyzer (Rungis, France) was used to determine hs-troponin I values in human serum samples per the manufacturer’s instructions. The samples were analyzed per manufacturer’s instructions using original commercial kits.

Imprecision
The normal and abnormal level samples were used to determine the assay imprecision (Table 1) by estimating within-run and total standard deviations and by calculation of coefficient of variation (% CV), according to the CLSI (formerly NCCLS) EP5A protocol [8].

<table>
<thead>
<tr>
<th>Number of data points</th>
<th>Normal sample</th>
<th>Abnormal sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mean</td>
<td>25.7</td>
<td>60.3</td>
</tr>
<tr>
<td>Within run SD</td>
<td>0.992</td>
<td>2.889</td>
</tr>
<tr>
<td>Within run CV%</td>
<td>3.85</td>
<td>4.84</td>
</tr>
<tr>
<td>Total mean</td>
<td>25.7</td>
<td>60.3</td>
</tr>
<tr>
<td>Between run SD</td>
<td>1.473</td>
<td>1.10</td>
</tr>
<tr>
<td>Between run CV%</td>
<td>5.71</td>
<td>1.85</td>
</tr>
<tr>
<td>Total mean</td>
<td>25.7</td>
<td>60.3</td>
</tr>
<tr>
<td>Between day SD</td>
<td>0.415</td>
<td>1.71</td>
</tr>
<tr>
<td>Between day CV%</td>
<td>1.61</td>
<td>2.86</td>
</tr>
</tbody>
</table>

Table 1. Precision study’s data of the hs-Troponin I assay

Estimation of measurement uncertainty
The hs-troponin I analysis results were re-evaluated by estimation of measurement uncertainty (MU). We used internal and external quality control results to calculate MU according to Eurachem/CITAC Guide CG 4(Table 2) [6].

To calculate uncertainty of within-laboratory reproducibility (uRW), we used Architect Stat Troponin I control level 1 coefficient of variation (CV %) and level 2 %CV for a month. RMS bias : √([bias (external quality control) ²/n] (n: number of external quality control).

<table>
<thead>
<tr>
<th>Internal quality control (level1)²</th>
<th>24.73- 8.94%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal quality control (level2)²</td>
<td>59.85- 5.99%</td>
</tr>
<tr>
<td>uRW</td>
<td>7.61</td>
</tr>
<tr>
<td>External quality control</td>
<td>6.04</td>
</tr>
<tr>
<td>RMS bias</td>
<td>8.27</td>
</tr>
<tr>
<td>uCV</td>
<td>1.29</td>
</tr>
<tr>
<td>Standard uncertainty</td>
<td>6.17</td>
</tr>
<tr>
<td>Combined uncertainty</td>
<td>9.80</td>
</tr>
<tr>
<td>Expanded uncertainty</td>
<td>19.60</td>
</tr>
</tbody>
</table>

Table 2. Values used for calculation of measurement uncertainty of hs-troponin I
For calculation bias, we used RIQA\textregistered\hspace{0.16em}R external quality control results for eight months. Root Mean Squares of Biases (RMS bias) and uncertainty component from the certified or nominal value (uREF) were calculated. External quality control bias results were used to calculate RMS bias.

\begin{equation}
u = \frac{\text{RIQA} R}{n}
\end{equation}

External quality control result's mean CV\% (sRIQA) and number of laboratory were used to calculate uREF. Standard uncertainty (\(u\text{bias}\)) and expanded uncertainty (\(U\)) were calculated.

\begin{equation}
\text{Combined uncertainty (}u\text{)} = \sqrt{u_{\text{bias}}^2 + u_{\text{RW}}^2}
\end{equation}

\begin{equation}
\text{Expanded uncertainty } (U) = k \cdot u
\end{equation}

k: coverage factor (for 95\% level of confidence k=2)

Expanded uncertainty results were compared to total allowable error of hs-troponin I test.

Results

Values of Troponin I cut off were recommended by manufacturer as 34.2 pg/mL for male and 15.6 pg/mL for female in data sheets of the commercial kits. Values used for calculation of measurement uncertainty of hs-troponin I are given in Table 1. Measurement uncertainty (95\% confidence interval) for hs-troponin I is estimated to be ± 19.60 \%. In this study, 346 hs-troponin I analysis results (206 females and 140 males) which are above cutoff values might be below cutoff values if they were assessed based on measurement uncertainty. Also, 260 hs-troponin I analysis results (155 females and 105 males) which are below cutoff values might be above cutoff values if they were assessed based on measurement uncertainty. It was observed that the results of 606 out of 16679 patients (3.63\%) were affected by uncertainty values.

TAE was ± 27.91 \% to Desirable Biological Variation Database. Estimated Measurement uncertainty of hs-troponin I is (±19.60 \%) lower than TAE in our study.

Discussion

Measurement uncertainty provides quantitative estimates of the level of confidence that a laboratory has in its analytical precision of test results. According to ISO 15189, MU should be made available by the laboratory on request [9]. The laboratory should determine the uncertainty of results where relevant and possible. Since the evaluation of MU was determined essential and important, several studies have investigated measurement uncertainties of different parameters [10,11].

Cardiac markers play a major role in the diagnosis and treatment of patients suspected of having AMI. Standardization of hs-troponin I is important for laboratories but standardization is difficult for heterogeneous molecules such as troponin I [12]. The ESC and ACC recommend a single decision cutoff point for cTn based on the 99th percentile of a reference population for the diagnosis of patients presenting with AMI and an imprecision of 10\% coefficient of variation (CV) at the 99th percentile [13].

We calculated \%CV of hs-troponin I assay according to EPSA protocol. For clinical use, acceptable \%CV for cardiac troponin assays is \%10 at the 99th percentile [14]. The hs-assays have less analytical error and reach the highest precision of clinicalpractice guideline precision recommendations (\% CV <10\%) at the 99th percentile [15]. In our laboratory, total \%CV of both two levels were 7.08\% and 5.92\% for hs-troponin I, and they were within acceptable range.

Measurement uncertainty estimates an interval of values within which the 'true' value of a measured analyte lies, with a stated level of confidence [16]. Troponin measurement should be made with standardized methods to achieve comparable results regardless of the assay system or laboratory where the measurement is performed [17]. Laboratories should calculate uncertainty of troponin tests and report these in conjunction with troponin results to help clinicians. For standardization of troponin results, uncertainty of measurement becomes important.

Medical laboratories should calculate uncertainty of troponin tests and report these with troponin results to help clinicians. A test result is not powerful enough without an assessment of its reliability. Therefore, hs-troponin I results which are close to cut off should be evaluated with uncertainty of measurement. Reporting hs-troponin I results with measurement uncertainty is important to show measurements that are contained within the true limits and the level of confidence.

Scientific Responsibility Statement

The authors declare that they are responsible for the article's scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.

Funding: None

Conflict of interest

None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.
Measurement uncertainty of troponin I

How to cite this article: